

0.00€

0.0 0 Kg

6.45 €/Kg

EsiWelma® s.r.l.

TW1-M and TW1nA-M Computer Head User Guide CNG Version (Methane)

Via F.lli Canepa 134d-e 16010 Serra Riccò (Genoa) ITALY Tel: +39 010 754211 Fax: +39 010 7542178 email:info@esiwelma.it

8.88€

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	1	43

CONTENTS

1.	FECHNIC	AL DESCRIPTION	- 4
1.1.	Structu	ral specifications	- 4
1.2.	Technic	cal data	- 4
2.		NAL DESCRIPTION	- 6
2.1.	Data dis	splav	- 6
2.2.	Operati	ng sequence description	- 6
2.2	.1 Má	anual delivery	- 8
2.2	.2 Pr	e-set value deliverv	- 8
2.2	.3 Pr	ogramming by Host	- 8
2.2	4 Pr	ogramming by a 16-key keyboard	- 9
2.2	.5 Αι	utomatic stop sequence	- 9
2.2	.6 Su	ipply voltage blackout management	10
2.3.	Connec	tion to Host	10
2.4.	Euro €-		10
2.5.	Delivery	y in Self-Service mode	10
2.5	.1 Eİ	ectrical devices involved	11
2.5	.2 Se	equence of delivery	11
2.5	.3 Wa	arning light management	12
3.	ROUBLE	SHOOTING	13
3.1.	Fatal er	rors	13
3.2.	Non fat	al errors	13
3.3.	Error re	eview table	14
3.4.	Operati	ng modes	17
3.4	.1 Sv	/stem adaptation	17
3.4	.2 ĆÍ	NG dispenser adaptation	17
3.5.	Types c	of refuelling	17
4.		JRES	18
4.1.	Reading	g from the absolute totalizer	18
4.2.	Compu	ting head set-up	19
4.2	.1 Si	mple parameters	26
4.2	.2 Pa	arameters for temperature compensation	26
4.2	.3 Co	omplex parameters	27
4.2	.4 Pa	assword	27
4.2	.5 Pr	ice change	29
4.3.	Metrica	I check procedure	30
5.	ARDWA	RE PERSONALIZATION	31
6 0	ΤΟΝΔΙ	\$	22
61	Fyterna	Lo al 4x4 keyboard	33
6.2	16-digit		33
6.3		ly signalling device	34
64	I/O exp	ansion device	34
7			25
7. 1		Itago connections	25
7.1.	High vo	hage connections	30
۰. <u>۲</u> .			53 A A
o. I			41
9.	MECHANI	CAL CLAMPING	42
10. I	EGALIZI	NG PROCEDURE OF THE COMPUTING HEAD TW1	43
10.1.	Legaliz	ing procedure of CPU	43
10.2.	Legaliz	ing procedure of display	43

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	2	43

List of figures

Figure 1: Summary electric connections	5
Figure 2: Max data display	6
Figure 3: Refuelling start sequence; CNG metric counting version	7
Figure 4: Example of a 5.00€	8
Figure 5: Example of a 10Kg	8
Figure 6: 16-key Keyboard	9
Figure 7: Temporary amount conversion to Euro	10
Figure 8: "deadman's break" push button	11
Figure 9: Activation Key of Self-Service/Served mode	11
Figure 10: Visualization "waiting procedure selecting"	18
Figure 11: Set-up buttons	18
Figure 12: Display absolute total counter Kg	19
Figure 13: Enter password	19
Figure 14: Notice insert jumper JP2	19
Figure 15: Visualization of some set-up parameters	
Figure 16: Zeroing Massmeter procedure	
Figure 17: Specific weight setting	27
Figure 18: Visualization of the conversion rate Currency/Euro	27
Figura 19: Changing password request	27
Figure 20: Visualization saving data	27
Figure 21: Changing Password	
Figure 22: Inserting Password	29
Figure 23: Password changing request	29
Figure 24: Visualization saving unit price	29
Figure 25: Entering Password	
Figure 26: Confirm of anomaly simulation procedure	
Figure 27: Passage from delivery to block during an "anomaly simulation" phase	
Figura 28: TW1-M; "Standard" Identification plate	41
Figura 29: TW1nA-M; "Atex" Identification plate	41
Figure 30: Clamping of the CPU box	42
Figure 31: Clamping of the display box	42

List of photos

Photo 1: CPU	4
Photo 2: Set-up / Price Changing	4
Photo 3: Display	4
Photo 4: Set-up jumper on CPU	31
Photo 5: Pre-set keyboard adjustement on customer's demand	33
Photo 6: Second Display	33
Photo 7: Anomaly remote signalling device	34
Photo 8: I/O expansion device	33
Photo 9: Identification plate of the electronic computing head TW1	41
Photo 10: Computing head TW1 CPU	43
Photo 11: Computing Head TW1-M and TW1nA-M display front view	43
Photo 12: Computing Head TW1-M and TW1nA-M display rear view	43
Photo 13: Computing Head TW1-M and TW1nA-M display rear view . Neon tube back-lighting versi	on .43

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	3	43

1. TECHNICAL DESCRIPTION

TW1 electronic computing head is designed to operate on one-nozzle fuel dispensers, using one or two-sided display systems. It can communicate with a Host sending data concerning the refuelling during the process and/or at the time of the device.

1.1. Structural specifications

The computing head is composed of:

One **CPU board** of a supplier and communication interface. Each assembly is settled into a metallic box to be protected both mechanically and against EMI interferences;

One board for set-up/price changing settled into a plastic box. This assembly can be put by the customer in the most comfortable place or inserted by convenience;

One or two **display boards**, optionally settled in a metallic box.

Power supply:

Temperature:

Measure:

Power consumption:

Humidity (no dew):

Solenoid valve control:

Measuring device inlet: • Pulses \rightarrow one channel:

Serial \rightarrow ModBus:

Max flow rate:

Protection grade

Photo 1: CPU

Photo 2: Set-up / Price Changing

Photo 3: Display

3.5Kg/s or 3.5Sm³/s (see Setup) 1dag or 10dm³ (see Setup) N.O. max 270Vca/3A Standard /1A Atex (*)

1 pulse = 10 gA-B channel IP20(**)

(225 x 250 x 50)mm

1950g

960g

Electromechanical not resetable (7 numbers): 1 counting unit = 1Kg/Smc (see Setup)

- Electronic not resetable (10 numbers): 1 counting unit = 1Kg/Smc (see Setup) (230 x 154 x 66)mm
- Computing Head CPU Dimensions:

Total counter depending on version:

- Computing Head CPU Weight:
- Computing Head Display Dimensions:
- Computing Head Display Weight:
- (*) Outputs device depending: Relays for TW1-M "Standard", or Solid State relays for TW1nA-M "ATEX".

(**) The declared protection degree is referred to the metallic box. The devices enclosed by the dotted line in **Figure 1** must be installed in a cabinet with at least protection degree IP54, compliant to standard EN60079-15 of ATEX directive.

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	4	43

230Vac ± 10% 10VA min. -40°C max 70°C 95%

Figure 1: Summary electric connections

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	5	43

2. FUNCTIONAL DESCRIPTION

2.1. Data display

TW1 computing head can be combined with one-nozzle fuel dispensers, data are always visualised on a 6-digit display for the amount to be paid, a 5-digit display for delivered fuel and a 4-digit display for unit price.

Figure 2: Max data display

25mm high back lighted LCDs made up the display bars. The backlighting system is made up of a printed circuit with a led matrix welded on. It is settled on the backside of the metal box and gives out a green light. As an alternative it is possible to use the dispenser's own light.

2.2. Operating sequence description

Once initialised, the computing head carries out some checks:

•	EPROM	- it checks the EPROM CRC and compares it to the data reported on the program.
•	RAM	- it checks the writing and reading ability of data RAM.
0	EEROM	- it checks the congruence of the data reported in EEROM.
0	DISPLAY	- it checks the connection status of the display.
•	RX-TX	- presence of active connection with Host.
•	DATA COMPLIANCE	- compliance of the data used by RAM with the originals in E ² ROM.
0	UNIT PRICE	- it checks that the unit price is not zeroed.
•	ANALOG INPUTS	- it checks the presence of pressure and temperature transmitters.
•	MEASUREMENT	- it checks that the mass flow meter (in case of MODBUS system) is present and communicating.
•	MAX. PRESSURE	 it checks that pressure does not exceed the maximum functioning pressure of the plant.

If the above mentioned checks give a positive result, display temporarily shows the program code and the data about the last delivery, then it switches-off. In case of anomalies display shows the relevant error code (See further, "Anomalies management" §3).

When the dispenser is in stop-mode, the computing head performs continuously the same controls described above.

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	6	43

The refuelling operation begins by turning the switch to START

If the dispenser is available and nozzle is connected to the refuelling receptacle on the vehicle, it's possible to actuate the "START" switch, activating the delivering sequence of the computing head, which will perform the following controls:

- The same as described above - see §2.2
- PULSER - in case of a pulse measuring device, the presence of
- TOTAL COUNTER
- pulses is verified in time compliance.
- verifies the presence of the electromechanical total counter
- HF - verifies that the compressed natural gas flow does not exceed the set value, so that in case of a gas loss due to the cut of a nozzle connected to the vehicle, flow can be immediately stopped.

If the above mentioned checks give a positive result, the refuelling procedure can start with a visual control by display and a subsequent activation of the solenoid valves.

Display

- All digits show 8, then blank and at last 0.00 Euro and 0.00 kg. Each phase takes about 1 second: in this way user can verify immediately the good working of each step.

Figure 3: Refuelling start sequence; CNG metric counting version

During the refuelling process the computing head executes the following functions:

- Activation of the command modules of the following devices: solenoid valves and operating lights.
- As defined during the set-up:

Pulse acquisition coming from the transducer Every pulse is equivalent to 10g.

Acquisition of the delivered quantity through communication with the mass flow meter.

- Calculation and visualization of the delivered quantity and the relevant amount.
- Control of the validity of the visualized data (implicit with the control of Ram and Eprom).
- Functional control of the single or both displays.
- Presence control of the electro mechanical total counter and managing of both electro mechanical and/or electronic total counter.

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	7	43

Delivery ends because of:

- Opening of the "start" switch.
- Reaching of a pressure in the vehicle cylinder that makes the flow tend to zero.
- Reaching of the maximum allowed pressure value in the vehicle cylinder.
- Reaching of the maximum amount or of the maximum delivered quantity.
- Anomalies (see §3).
- Blocking order by Host.

... If delivery is stops due to anomalies:

display shows, if possible, the relevant error code. (see troubleshooting §3.).

2.2.1 Manual delivery

Operator decides the beginning of the delivering process, acting on the "START" switch and ends the refuelling by acting on the "START" switch again, when the desired quantity is reached or when the tank in completely filled.

2.2.2 Pre-set value delivery

The computing head provides to stop delivery once the pre-set value is reached, both in case of programming by pre-set buttons and in case of Host programming.

The requested quantity is shown as follows:

- Unit price display
- Amount display
- always active
 if pre-setting is in Euro, display shows the requested value, otherwise it is shaded.
- Quantity delivered display

Figure 4: Example of a 5.00€ Amount pre-setting

€ 1000 Kg 0680 ^{¢t}/kg

Figure 5: Example of a 10Kg delivered quantity pre-setting

2.2.3 *Programming by Host*

Every time the computing head is connected to a Host with Post-pay function, it can receive an order of price change, by sending a new unit price, or an order of delivering stop.

> Metrological parameter settings cannot be modified by Host. Unit price cannot be modified during the delivery.

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	8	43

2.2.4 Programming by a 16-key keyboard

When computing head switches on, it makes a presence control of the keyboard. If this test is positive, the computing head manages the keyboard to pre-set a quantity or an amount to be delivered.

1	2	3	DELETE
4	5	6	ENTER
7	8	9	Euro
Not Used	0	,	Kg/Smc

Figure 6: 16-key Keyboard

With nozzles in place, keyboard works and can be used as follows:

- 1. Choose Euro or Liter pre-set by pressing the corresponding button.
- 2. Press number buttons (with comma, if necessary) to pre-set value.
- 3. Press « ENTER». Now the display of the computing head shows on the LCD the amount (upper line) or the quantity delivered (central line).
- 4. If the value is correct, delivery can start. If an error occurs, press «DELETE» and repeat steps 1÷3.

During the delivery, keyboard doesn't work. When operator puts the nozzle back in place another operation is possible.

2.2.5 Automatic stop sequence

Automatic stop occurs in two phases:

- Flow rate reduction by controlling an optional solenoid valve. The point of intervention can be varied by set-up (bP parameter) following the procedure described below.
- Motor and solenoid valve stop.

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	9	43

2.2.6 Supply voltage blackout management

If during normal operation a supply voltage black out or even a blackout occurs, both when nozzle is inserted and during delivery, the computing head enters a procedure called PWF which allows to memorise: amount, quantity delivered and absolute totalizer. The data display is maintained for about 30 minutes from the moment the network shortage occurred. The power supply lack is visualized writing "OFF" on the unit price display. The network shortage state is displayed by writing OFF on the unit price bar. When power supply is restored, data related to interrupted delivery are read by the memory and visualised on the display and send to the Host, if present.

2.3. Connection to Host

This computing head as its standard can be connected by "Pumalan" 3 wire current loop TX, RX, Gnd. Different connections are possible by adding an adapter. To use and implement different protocols, a license released by manufacturer is needed. Pumalan is a registered mark of GILBARCO (LOGITRON).

2.4. Euro €

The standard computing head connection is foreseen with three cables, TX, RX, Gnd.

The computing head, by its set-up, can work with different foreign currencies: operator can set the decimal digits in the unit price and in the amount. In any case operator can choose quickly the Euro set by setting jumper J3: while starting, the computer head will set the correct decimal digits.

Further, as requested from the standard, in those countries, which are approaching to the Euro. after the refuelling process local shown in currency, iť s possible to visualize the amount converted in Euro by temporarily pushing an appropriate button.

Figure 7: Temporary amount conversion to Euro

The standard rate DGII-C-4(99) is used as conversion factor.

By pushing the button for a second time, the visualization will switch back to the local currency value. If another refuelling process should be started, the computing head switches in any case to the normal visualization.

2.5. Delivery in Self-Service mode

In accordance with the Decree dated 11 September 2008, amendments and supplements to Decree of Minister dated 24th May 2002 about the rules for fire prevention and planning, construction and operation of distribution systems of natural gas for vehicles. (*GU n. 232 del 3-10-2008*)

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	10	43

The computing head can work in Self Service mode following the procedures required and described below:

2.5.1 Electrical devices involved

In addition to the lights (red and green) the following devices will be installed on board of the dispenser: a "deadman's break" push button (mushroom head, no block, normally open), an emergency push button (with block interrupting the power supply to distributor) and a 3-position key selector (1 unstable and 2 stable).

Figure 8: "deadman's break" push button

Aloof (safe zone), a button (normally closed) to disable the delivery to the user by the operator (connected in series with the dead man's button).

The computing head manages these devices by the following digital inputs.

- **1** Input « deadman's break » temporary voltage free contact, normally open
- Input «Reset deadman's break » temporary contact of the 3-position key selector
- Input selector «Self (AUT) / Served (MAN)» bistable contact of the 3-position key selector, contact closed in position Served.

2.5.2 Sequence of delivery

The 3-position key selector allows the operator to choose the operating mode of the dispenser: Manual (SERVED) or Automatic (SELF-SERVICE).

The positions of the selector are:

- Deadman's break Reset (counterclockwise rotation) temporary, return to central position
- Automatic Self-Service (central position) close stable contact.
- 3 Manual Served (clockwise rotation), open stable contact.

Figure 9: Activation Key of Self-Service/Served mode

The key can be removed only in positions 2 and 3

Manual (Served) mode works as described in §2.2.

In addition to what already explained, operator can stop and restart the flow of gas without resetting the current delivery. By the "deadman's break" push button in the manual mode, the delivery starts and stops alternately every time it is pushed.

This function can be repeated several times consecutively without resetting the counting. The delivery definitely finishes when the user puts the nozze back in place or when the condition of low flow (full bottle) is reached.

Type / N°	Rev.	Fw	Date	Page	Total pages	
EW055.600D	D	4L	6 th June 2018	11	43	

Automatic mode (Self-Service) is almost the same but during the delivery the "deadman's break" push button must be always pushed. If this push button is released before the refuelling finishes, delivery stops and has to be locally rehabilitated by operator using the key selector in reset position, then the user can re-start the delivery by pushing (and keeping) the "deadman's break" push button.

In remote, by the button "Single Block" (Normally Closed), located in series with the " deadman's break" device, the operator may at any time stop the current delivery, which can be rehabilitated only locally using the key selector in reset position.

According to the standard or the Self-Service mode, the cumputing head works automatically, detecting the presence of the I / O Expansion switch board.

The card connection on the flat I²C Bus, is described and shown below. See wiring B.T. § 7.1

2.5.3 Warning light management

To allow operators to follow in remote the operations, each possibile status of the dispenser is coupled with a unique code as shown in the table below:

Status of the dispenser	Green Light	Red Light
Dispenser off	Off	Off
Dispenser Ready	On	Off
Nozzle off	Flashing	Off
In delivery	Off	On
End of delivery (for low flow or Stop by HOST in Auto)	Off	Flashing
End of delivery (Nozzle in) ≡ Dispenser Ready	On	Off
Deadman's break (push button released)	Flashing	Flashing
Computing head error (Dispenser not available)	On	On
Computing head set-up (Dispenser not available)	On	On

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	12	43

3. TROUBLESHOOTING

During its normal working the computing head controls the internal data flow and the correspondence of data coming from outside. Possible anomalies are managed in different ways according to the damage they may cause to data.

The recognized errors can be subdivided in *fatal* and *non fatal* errors as described as follows. In any case the computing head stops the current refuelling, visualizes the memorized recognized error code and, if connected to a Host, communicates the state of error using a proper error code.

3.1. Fatal errors

Fatal errors are normally due to malfunctioning which may cause data loss. In such a case the computing head stops the delivery, displays the relevant code and does not re-start. To start again it must be reset by switching off power supply for some second.

- Data congruence
- EPROM Error
- RAM Error

- EEROM Error
- Presence of totalizer Error
- Presence of optional I/O (Self-Service)
- Pulser or communication with mass flow meter

3.2. Non fatal errors

Belong to such a category all blocks due to an anomalous status of the field, and all temporary blocks occurring due to an anomalous working process, caused by a secondary situation such as the lack of unit price, or occasionally, for example because of an incorrect data due to a disturbance. In that case the error will be automatically deleted as soon as the anomalous status that created it ends.

The computing head tries three times to restart; at the fourth unsuccessful attempt, the error turns into fatal.

- Display 1 and 2
- Communication with Host
- Set-up data loss
- Maximum system pressure

- Maximum delivering flow
- Temperature transducer presence
- Pressure transducer presence
- Pulser disconnection

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	13	43

3.3. Error review table

	ors	Description		Data congruence	EPROM error	Ram error	Eerom error	Totalizer Error	Spare Inputs	Mass flow meter control (also for impulsive type)	Display 1 after 3 errors NF	Display 2 after 3 errors NF			Maximum pressure error after 3 errors NF	High flow rate error after 3 NF errors	Temperature sensor. after 3 NF errors	Pressure sensor after 3 NF errors	Pulser Output not connected after 3 NF errors
	Fatal eri	ode I	Ascii	[3][0]	[1][1]	[1][0]	[1][5]	[2][2]	[4][7]	[4][2]	[G][0]	[G][0]			[D][4]	[G][7]	[D][6]	[D][5]	[G][1]
в		Protocol C [E+][E-]	Нех	[0×33][0×30]	[0×31][0×31]	[0×31][0×30]	[0×31][0×35]	[0×32][0×32]	[0x34][0x37]	[0x34][0x32]	[0x47][0x30]	[0x47][0x30]			[0x44][0x34]	[0x47][0x37]	[0x44][0x36]	[0x44][0x35]	[0x47][0x31]
/iew table		Display Code		FECd	FEEP	FErA	FEEE	FEto	FEin	FEMF	FEPd	FEPd			FEHP	FEHF	FESt	FESP	FEPU
Errors rev	l errors	Description									Display 1	Display 2	Communication	Set-up data missing	Maximum pressure	High flow rate	Presence Temperature sensor	Presence Pressure sensor	Pulser Output not connected
	Non fata	ode]	Ascii								[0][2]	[0][2]	[8][0]	[4][1]	[4][4]	[7][7]	[4][6]	[4][5]	[7][1]
		Protocol C [E+][E-	Hex								[0x37][0x30]	[0x37][0x30]	[0×38][0×30]	[0x34][0x31]	[0x34][0x34]	[0x37][0x37]	[0x34][0x36]	[0x34][0x35]	[0x37][0x31]
		Display Code									Erd1	Erd2	ErLn	ErSU	ErHP	ErHF	ErSt	ErSP	ErPU

Type / N°	Rev.	Fw	Date	Page	Total pages	
EW055.600D	D	4L	6 th June 2018	14	43	

Description of anomalies:

Display	LCD single bar presence control, with identification of the absent line
	Error Code: Erd1 o Erd2
Communication with Host	The computing head verifies the existence of polling from Host every 5 seconds at least. If there is no polling, it stops the delivery
	Error Code: ErLn
Set-up data missing	If there are no Set-up data or they are not conformable, the computing head does not deliver and operator must input these data
	Error Code: ErSU
Maximum system pressure error	Verifies the status of the pressure sensor (or pressure sensor switch) and in case of exceeded pressure delivering procedure will be blocked.
	Error Code: ErHP
High flow rate error	Verifies the outgoing flow rate and if the maximum value is exceeded, delivering procedure will be stopped.
	Error Code: ErHF
Presence of temperature sensor	Verifies that the signal coming from the temperature sensor Pt100, respects the functioning range (- $60^{\circ}C \div + 60^{\circ}C$)
	Error Code: ErSt
Presence of pressure sensor	Verifies that the signal coming from the pressure sensor respects the functioning range ($4 \div 20mA$)
	Error Code: ErSP
Pulser output not connected	Verifies that, from the beginning of the delivering process (solenoid valve start), the relevant pulses arrive within 6s.
	Display Communication with Host Set-up data missing Maximum system pressure error High flow rate error Presence of temperature sensor Presence of pressure sensor Pulser output not connected

Error Code: ErPU	
------------------	--

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	15	43

Data congruence	Data correspondence control. The computing head checks, even during the delivery, both EPROM and RAM data. In case an error occurs, it finally stops the delivery.
	Error Code: FECd
EPROM error	When nozzle hangs on, the computing head checks the EPROM checksum. If something is wrong, it doesn't allow the delivery.
	Error Code: FEEP
RAM Error	When nozzle hangs on, the computing head checks RAM. If something is wrong, it doesn't allow the delivery.
	Error Code: FErA
EEROM Error	When nozzle hangs on, the computing head checks the E ² rom checksum. If something is wrong, it doesn't allow the delivery.
	Error Code: FEEE
Totalizer Error	The computing head checks the totalizer presence. In case an error occurs, it finally stops the delivery.
	Error Code: Feto
Optional Inputs/Outputs	The computing head verifies the presence of device dedicated to Self Service and other applications.
	Error Code: FEin
 Mass flow meter control 	The computing head verifies the communi- cation and/or of the reset procedure of the mass flow meter; In case an error occurs it finally stops the delivery.
	Error Code: FEMF
	(also in the case of impulsive type mass flow)

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	16	43

3.4. Operating modes

For fitting different field operating modes, the computing head can work in different ways, that can be subdivided in two principal categories:

- 1. system adaptation (to implant)
- 2. dispenser adaptation

3.4.1 System adaptation

The management of the solenoid valves is adaptable to the type of system where the dispenser is installed:

- Single level for the implants that have only one compression system installed
- Cascade 2 levels for the implants that have a 2-level compression system installed
- Cascade 3 levels for the implants that have a 3-level compression system installed

3.4.2 CNG dispenser adaptation

The management of the solenoid valves is adaptable on the type of dispenser installed:

- EV1 active only during the first level phase
- EV1 always active until the end of refuelling
- High pressure control determinate with a pressure switch
- High pressure control determinate with a pressure transmitter

3.5. Types of refuelling

The computing head can be adapted to different national standards, allowing to modify the way of refuelling as follows:

- No control:
 - Free delivery up to the maximum available pressure.
- Compensated:
 - It modifies the end of the refuelling in function of the pressure value related to the ambient temperature (so that at 25°C the pressure can not exceed the specific value inserted during the set-up by **PCON** parameter).

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	17	43

4. PROCEDURES

Further the normal refuelling, there are three different possible procedures:

- Reading from the absolute total counter
- Computing head set-up (changing the configuration parameters), price change
- Metrical office (anomaly simulation)

To start a procedure, operator has to push one of the push-buttons on the set-up board; display will show the following notice:

Push on one of the set-up buttons, to activate the relevant procedure; push-buttons are available on the printed circuit connected to the same cable of the display:

Figure 10: Visualization "waiting procedure selecting"

Procedure black «t» reading absolute totalizer

Procedure red «S» Set-up computing head: Parameters changing

Procedure green «U»Metrical office: anomaly simulation

Figure 11: Set-up buttons

4.1. Reading from the absolute totalizer

The absolute totalizer is a counter which cannot be reset (to zero) and allows to store and display the quantity delivered in Kg or Smc on 10 digits. Since it is not possible to dispose of such an extended display, digits are subdivided into groups and visualised as follows:

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	18	43

By pushing the black button «t», the computing head shows the first group of digits; to visualize the second, third and fourth group, advance by pushing the green button «U» once each time.

Figure 12: Display absolute total counter Kg

Further, a non annullable electro mechanical total counter that can show 7 digits can be installed on the display. This counter is electronically controlled and in case of failure, the computing head stops the occurring refuelling process and visualizes the error code: FEto.

4.2. Computing head set-up

After entering in set-up mode by pushing the red button «S», the computing head requires a password; if nothing has been previously changed, the default password is "20000". To insert the correct code follow this procedure:

- Set Jumper J2
- Push the black button «t» until the value of the first digit has been reached
- Push the red button «S» to switch to the next digit
- Once the correct value has been inserted also for the last digit, push the red «S» button again to enter the set-up.

Figure 13: Enter password

If the password is not correct, the computing head immediately breaks down the set-up procedure and turns.

If the password is correct, it's possible to proceed with the upgrade of the values of the parameters.

If jumper J2 has not been inserted already, the computing head indicates that it is required for the set-up to insert the jumper now with the shown message: Set JP2

Figure 14: Notice insert jumper JP2

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	19	43

The following table shows all the available parameters:

Computing head set-up parameters							
Code	Imprint	Signification	Range	Step	Default	Units	
01	LF	Functioning level	1-3	1	2		
02	St	Functionality Electro valve 1	0-3	1	0		
03	Mt	Meter type	0-3	1	3		
04	Sb	ModBus communication baud rate	0-3	1	0		
05	L0	Low flow rate 1 st 2 nd level (stop for mono-level)	1-16	1	2	10g	
06	t0	Acquisition delay for L0	0-15	1	8	S	
07	L1	Low flow rate 2 nd 3 rd level (stop for bi-level)	1-16	1	1	10g	
08	t1	Acquisition delay for L1	0-15	1	12	S	
09	L2	Low flow rate 3 rd level (stop delivery)	1-16	1	1	10g	
10	t2	Acquisition delay for L2	0-15	1	12	S	
11	AL	LAN address	1-32	1	1		
12	HF	High flow rate	1-299	1	150	10g/s	
13	AP	Enables the pressure switch	0-15	1	12		
14	AC	Enables the pressure compensation	0-1	1	0		
15	HP	Pressure switch intervening values	200-299	1	235	barg	
16	Pcon	Compensation pressure	150-250	1	207	barg	
17	tC	Compesation temperature	0 – 50	1	21	°C	
18	Ot	Temperature offset	± 20	1	10	°C	
19	tF	Duration of the first puff	2-60	1	4	s	
20	tS	Duration of the second puff	1-30	1	10	S	
21	dr	Awaiting reading	1-40	1	10	s	
22	Ро	POS option	0-2	1	0		
23	Pr	Kind of preset	0-2	1	0		
24	bP	Slowdown (low flow)	0-90	10	50	10g	
25	cA	Early closure of the solenid valve	0-11	1	6	10g	
26	сМ	Hose compensation in preset mode	0-10	1	5	10g	
27	tP	Nozzle switch acquisition time	0-10	1	1	S	
28	FC	Holding time of the count beyond the stop	0-40	5	30	0.1s	
29	PL	Protocol Level	1-4	1	4		
30	PC	Pressure switch contact polarity	0-1	1	0		
31	Ar	Amount approximation	0-3	1	3		
32	DP	Unit price decimal digits	0-3	1	3		
33	DI	Amount decimal digits	0-3	1	2		
34	Ct	Passage to round digit	1-3	1	1		
35	nd	Number of connected displays	1-2	1	1		
36	CE	Number of delivered display digits	5-6	1	5		
37	bL	Delivery stop for LAN error	0-1	1	0		
38	МС	Flow meter zero setting procedure	0-1	1	0		
39	PS	Specific weight	255-9999	1	7000		
40	P1	Preset value push button 1	0-9/dig	1	10	€	
41	P2	Preset value push button 2	0-9/dig	1	5	€	
42	CF	Conversion factor currency / €	0.1-9.99999	1	6.55957		

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	20	43

Set-up parameters meaning:

00	ap parametere meaningi		
•	LF Functioning level	-	 Allows to change the functioning mode: 1 single level computing head 2 cascade 2 levels computing head 3 cascade 3 levels computing head
•	St Functionality Electro valve1	-	 Allows to change the intervention mode of the EV1: 0 Electro valve active only during phase 1 1 Electro valve active during the whole refuelling process 2 Equal to 0 but with EVs closed 3 Equal to 1 but with EVs closed
•	Mt Meter type	-	 Allows to inform the CPU about the type of used flow meter: 0 Impulsive type 1 Modbus Krohne type 2 Modbus MicroMotion type 3 Modbus Endress+Hauser
•	Sb Baud-rate Modbus comm's	-	 Select baud rate of mass flow communication port. 0 Baud-rate Automatico 1 38400 bps 2 19200 bps 3 9600 bps
۰	L0 Low flow rate 1 st 2 nd level	-	Represents the delivering value in dag/s, under this value the computing head switch on the next level (or stop the delivery if mono-level)
•	t0 Acquisition delay L0	-	Represents the time between the acquisition of the L0 status and the start of the next level (or refuelling ending procedure if mono-level)
•	L1 Low flow rate 2 nd 3 rd level	-	Represents the delivering value in dag/s, below than that the computing head switch on the next level (or stop the delivery if bi-level)
٩	t1 Acquisition delay L1	-	Represents the time between the acquisition of the L1 and the start of the next level (or refuelling ending procedure if bi-level)
٠	L2 Low flow rate for 3 rd level	-	Represents the delivering value in dag/s, below than that the computing head considers to be in minimum delivering condition at the end of 3^{rd} level, and stop the delivery
•	t2 Acquisition delay L2	-	Represents the time that must elapse between the acquisition of the status of L2 and the start of the ending delivery procedure.

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	21	43

- AL LAN IP
- **HF** High flow rate
- AP Pressure switch function

- It's the address that the computing head assumes when connected to a Host Computer.

- It's the value over which the computing head blocks the refuelling procedure charging the exceeded flow rate to a possible mechanical fault.
- When the pressure switch function is carried out by the pressure transmitter:
 - 0 not enabled
 - 1 enable, switch on @ +10bar & EV closed, 1 s
 - 2 enable, switch on @ +20bar & EV closed, 1 s
 - 3 enable, switch on @ +30bar & EV closed, 1 s
 - 4 enable, switch on @ +40bar & EV closed, 1 s
 - 5 enable, switch on @ +50bar & EV closed, 1 s
 - 6 enable, switch on @ +60bar & EV closed, 1 s
 - ■7 enable, switch on @ +70bar & EV closed, 1 s
 - ■8 enable, switch on @ 0bar & EV closed, 2 s
 - 9 enable, switch on @ +10bar & EV closed, 2 s
 - 10 enable, switch on @ +20bar & EV closed, 2 s
 11 enable, switch on @ +30bar & EV closed, 2 s
 - 12 enable, switch on @ +40bar & EV closed, 2 s
 - 13 enable, switch on @ +50bar & EV closed, 2 s
 - ■14 enable, switch on @ +60bar & EV closed, 2 s
 - ■15 enable, switch on @ +70bar & EV closed, 2 s
- AC Pressure compensation The computing head performs the pressure compensation in function of the temperature:
 - 0 does not compensate
 - 1 compensates (see curve § 4.2.2.)
- HP Pressure switch
 Pressure value that activates the protection and intervening switches off the computing head. With AP>0 & EV closed, the HP value is increased from 10 to 70bar triggered in 1 or 2 seconds. The hysteresis is fixed @ -10bar. (the parameter is visible only when AP>0)
- Pcon compensation pressure
 When a CNG bottle is filled with gas at ambient temperature and reaches a compensation temperature TC, it reaches the so called compensation pressure.
- tC Compensation temp.
 the parameter is visible only when AC=1)
 Reference temperature of the tank when car is parked in the garage.
 - (the parameter is visible only when AC=1)
- Ot Temperature offset
 This parameter allows operator to change the ambient temperature value measured by 1°C rates. (the parameter is visible only when AC=1)

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	22	43

tF duration of the first puff	 To measure the CNG pressure at the beginning of the delivery, it is necessary to fill the gas pipeline. tF is the time assigned to this activity. (the parameter is visible only when AC=1)
tS duration of the second puff	 To calculate the quantity to be delivered it is necessary to measure the bottle pressure after its partial filling up. tS is the time assigned to this second activity. (the parameter is visible only when AC=1)
dr awaiting reading	 Before reading the pressure values it is necessary waiting that variations damp. dr is the time assigned to this activity. (the parameter is visible only when AC=1)
Po POS Option	 The computing head changes the amount sent in the following way: 0 amount X 1 (not scaled value) 1 amount X 10 (one digit left scaled value) 2 amount / 10 (one digit right scaled value)
Pr Kind of preset	 Depending on this parameter, the computing head can deliver (see also P1 and P2 parameters): 0 no preset 1 preset in Kg or Smc 2 preset in currency
bP Low flow	 It shows how many dag the optional solenoid valve for high flow switches off before reaching the preset value.
cA Advance end of delivery	 It shows how many dag the solenoid valve for delivery switches off before reaching the preset value (Automatically calculated); in particular: 0 pre-stop disable 1 pre.stop calculation enable with -5dag 2 pre.stop calculation enable with -4dag 3 pre.stop calculation enable with -4dag 4 pre.stop calculation enable with -3dag 5 pre.stop calculation enable with -1dag 6 pre.stop calculation enable with -1dag 7 pre.stop calculation enable with +1dag 8 pre.stop calculation enable with +2dag 9 pre.stop calculation enable with +2dag 10 pre.stop calculation enable with +4dag 11 pre.stop calculation enable with +4dag
	<pre>tF duration of the first puff tS duration of the second puff dr awaiting reading Po POS Option Pr Kind of preset bP Low flow cA Advance end of delivery</pre>

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	23	43

cM Hose compensation	-	It shows how many dag are inside the hose @ normalized pressure of 220bar, in preset mode. cM=0 disable this compensation.
tP Nozzle acquisition time	-	Determines how many seconds the head has to wait for gun contact validation, before assuming the ON state in order to avoid improper starts
FC Time of end counting	-	It sets how many seconds the head keeps on querying the meter (ModBus type only) after the solenoid valve for delivery switches off.
PL Protocol Level	-	 It sets the Protocol Level used for communication: 1 Pumalan standard 2 Pumalan (mono + multiproduct + mix) 3 Pumalan esteso (mono + multiproduct + mix) 4 Pumalan like 3 with the totals and data counting
PC Polarity contact	-	 Indicates the polarity of the contact of the maximum pressure switch: 0 closes by max pressure 1 opens by max pressure
Ar Amount rounding	-	 It specifies how the rounding shall be performed: 0 no rounding on the last digit 1 if uc≥5 last digit exceeds rounding 10 if uc<5 last digit defects rounding 0 2 if uc>0 e ≤5 last digit exceeds rounding 5 if uc>5 e ≤9 last digit exceeds rounding 10 3 if cp ≥ 5 last digit exceeds rounding 10 if cp < 5 last digit defects rounding 0 where: uc = last visualized digit cp = foregoing digit
DP Unit price decimals	-	It specifies the number of digits on the right of the comma in the unit price.
DI Amount decimals	-	It specifies the number of digits on the right of the comma in the amount.
Ct passage to Round number	-	 It specifies the type of passage to a round number: 1 no passage to round digit 2 passage to hundreds (100, 200, etc.) 3 passage to thousands (1000, 2000, etc.)
nD Number of displays	-	It specifies the number of connected displays.
CE Nr. of delivered display digits	-	It specifies the number of digit on the delivered
		 display. 5 digit available – max supplied 990.00 6 digit available – max supplied 9990.00
	cM Hose compensation tP Nozzle acquisition time FC Time of end counting PL Protocol Level PC Polarity contact Ar Amount rounding DP Unit price decimals DI Amount decimals Ct passage to Round number nD Number of displays CE Nr. of delivered display digits	 cM Hose compensation tP Nozzle acquisition time FC Time of end counting PL Protocol Level PC Polarity contact Ar Amount rounding DP Unit price decimals DI Amount decimals Ct passage to Round number nD Number of displays CE Nr. of delivered display digits

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	24	43

•	MC Meter zero setting	-	This procedure allows to set the mass flow meter to zero. By placing the MC parameter to 1, the computing head automatically provides, at the end of the set-up, to perform the zero setting of the mass flow meter. At the end of the procedure it resets the parameter to 0.
•	PS Specific weight	-	This value must be inserted to convert from Kg to Smc. The value does not include the initial 0. (e.g.: For a weight of 0,7174 insert only 7174) (The parameter is visible only if the Jumper JP1, that allows the delivery in Smc, has been set)
•	P1 Preset value push button 1	-	Preset value used by the computing head when button 1 is pressed. It can be programmed in € or local currency for the amounts. Delivered fuel value is however 1Kg o Smc.
•	P2 Preset value push button 2	-	Preset value used by the computing head when button 2 is pressed. It can be programmed in € or local currency for the amounts. Delivered fuel value is however 10Kg o Smc.
٩	CF Conversion rate currency/€	-	Value to be inserted to convert the amount visualization from local currency to Euro. The conversion rate is modifiable only when the computing head is switched on.

To exit the SETUP procedure, operator has to set JP2 Jumper "open". Delivery is not possible if JP2 Jumper is "closed" in SETUP.

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	25	43

4.2.1 Simple parameters

- Choose the parameter to be modified (push the green button «U» to change the parameter).
- Push the black «t» button to increase the current parameter value.
- Push the red «S» button to annul or to decrease the current parameter value.
- Push the green «U» button to switch

Figure 15: Visualization of some set-up parameters. to the next parameter.

For the measuring devices provided for a zero setting procedure, it can be automatically started by the computing head. This procedure allows the mass flow meter to adapt measurement to the actual operating conditions.

It means the procedure has to be started only after the mechanical and electrical installation of the whole dispenser on the refuelling station. The whole sequence is automatic; when it stops, parameter is set to zero and the computing head is ready to deliver. In case a black out occurs during this procedure, parameter is set to zero and operator has to start the procedure again.

Figure 16: Zeroing Massmeter procedure

4.2.2 Parameters for temperature compensation

Temperature compensation is a procedure which allows to increase the quantity delivered to the maximum considering that the pressure inside the tank doesn't exceed a "compensated" pressure (when tank itself is at a "compensated" temperature).

For this reason, the following parameters are necessary to define the working point of the:

- tC and PCON allow to define pressure and temperature compensation.
- t and dr allow to fit the reading mode to the mechanical specifications of the dispenser.
- **tF** and **tS** set the duration of the puff which is necessary to calculate the quantity to be delivered in order to reach the requested compensation point.

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	26	43

4.2.3 Complex parameters

Some parameters are characterized by a higher number of digits; to modify this number it's necessary to use a different procedure and visualization:

PS parameter: specific weight of the delivered product, used to convert the visualization of the delivered from Kg to Smc.
 The setting sequence is to push «t» button to increase the digit flashing value; push red «S» button to pass to the next digit;

flashing value; push red «S» button to pass to the next digit; once all the digits correspond to the right, press green «U» button to exit the procedure.

Figure 17: Specific weight setting

OF parameter

The conversion rate from local currency to Euro is composed of 1 unit and 5 decimals; for example in the case of the old French franc value is 6.55957. CF values are determined by DGII-C-4(99) standards.

For the setting sequence press black «t» button to increase the flashing digit value; press red «S» button to switch to the next digit; when all digits have been set properly, press green «U» button to exit the procedure.

Figure 18: Visualization of the conversion rate Currency/Euro

At the end of set-up the computing head asks if the password should be changed and waits for an answer; **Y**es or **N**o. Push black button to change password. Push green button to exit without changing password.

Figura 19: Changing password request

In case of negative answer, the procedure ends by saving of the entered data.

Figure 20: Visualization saving data

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	27	43

In case of affirmative answer, it's possible to modify the password with a similar procedure as already described before.

Password is structured as follows:

Manager password value: 1XXXX

It exclusively allows to change price. The first value is always 1 and identifies the codes reserved to the manager plant.

Its starting value is 10000

Its starting value is 10000

Maintainer password value: 2XXXX

It allows to modify all the parameters that are foreseen in the computing head set-up procedure. The first value is always 2 and indicates the codes reserved to the maintenance company.

Its starting value is 20000

Importer password value: 3XXXX

It only allows to reset previous passwords.

The starting value is internally connected to the firmware and communicated to the customer at the moment of sales; it cannot be changed.

Password is made up of 5 digits. The first digit indicates the access level: Importer, maintainer, manager plant. At the moment of the changing procedure, the first digit is not modifiable (it indicates the access level), and for this reason it will not be visualized; the other four digits are at the discretion of the operator.

- Press black button until the requested value for the first digit is obtained.
- Press red button to pass to the next digit.
- Once inserted the correct value also for the last digit, press green button to confirm.

Figure 21: Changing Password

To exit the SETUP procedure, operator has to set JP2 Jumper "open". Delivery is not possible if JP2 Jumper is "closed" in SETUP.

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	28	43

4.2.5 Price change

After pressing red «S» button and entering the set-up, the computing head asks for password; if it has not been previously modified, its default value is 10000. To enter the exact code, follow the procedure below:

- Push black «t» button until the correct value of the first digitis reached
- Press red «S» button to pass to the next digit.
- Once inserted the correct value also for the last digit, press red «S» button again to enter set-up.

Figure 22: Inserting Password

It is not necessary to set the Jumper J2 to enter the **Price changing** procedure, because the operation is not considered metrically relevant.

If password is not correct the computing head immediately exits the set-up procedure and returns to stand-by mode.

If password is correct, the unit price can be updated. The operating sequence is similar to the already described above:

- Push red «S» button to select the digit to modify
 - Push black «t» button until the desired value is obtained
- Push green «U» button to exit the price changing procedure.

At the end of set-up the computing head asks if the password should be changed and waits for an answer: **y**es o **n**o.

Push black button to confirm the password changing intention. Push green button to exit without modifying the password.

Figure 23: Password changing request

In case of negative answer the procedure will end with the saving of the new unit price.

Figure 24: Visualization saving unit price

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	29	43

In case of affirmative answer, it's possible to change the password with a similar procedure as already seen:

- Press black button until the desired value for the first digit is obtained.
- Press red button to pass to the next digit.
- Once inserted the correct value also for the last digit, press green button to confirm.

Figure 25: Entering Password

4.3. Metrical check procedure

This procedure is reserved for the metrical check; it allows to simulate an error sequence and to verify that the computing head interrupts the delivering procedure, indicating the relevant error. Press green «U» button to enter the procedure.

The simulated errors are the following reported in the ERROR CODES (see §3.3.). To evidence the occurring simulation status, the computing head switches on all the available points on the unit price display line and the two of the left side of the delivered counter display line.

From now on, every time that the nozzle hangs off its holder, the computing head starts a delivering process, simulates an error and consequently control device blocks the delivering process as soon as the error is recognized. The failure code visualization appers on the unitary price.

Figure 26: Confirm of anomaly simulation procedure

Figure 27: Passage from delivery to block during an "anomaly simulation" phase.

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	30	43

5. HARDWARE PERSONALIZATION

On the CPU 3 selectors (JP) are available. They are placed in the case protected by the metrical seal and allow to modify the functionality of the computing head as follows::

- JP1 Delivered quantity expressed in Kg or in Smc
 - → Open Kg

4

- Close Smc
- JP2 Enables and performs Set-up operations
 - Open normal delivering
 - Close **set-up** enabled
- JP3 Forces the head to use the parameters in congruence with the Euro, unbounded from the current set-up:
 - Open utilizes Set-up values
 - Close utilizes values in congruence to Euro

Photo 4: Set-up jumper on CPU

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	31	43

The mass flow meter can be configured in function of the following operating parameters:

- Type of mass flow meter:
 - ✤ Modbus Krohne, MicroMotion, Endress+Hauser JP10, JP11 on the left
 - Impulsive Rheonik, MicroMotion, Endress+Hauser JP10, JP11 on the right
- Rating:
 - ✤ 5V 200mA (MAX) insert the Jumper in VP5 position
 - → 12V 100mA (MAX) insert the Jumper in VP12 position
 - 24V 50mA (MAX) insert the Jumper in VP24 position

mutual exclusive

- Exit channels (in case of an impulsive meter):
 - Active low channel
 JP4 jumper opened
 - Active high channel
 JP4 jumper closed

The connection terminals of the mass flow meter must be used exclusively to connect the mass flow meter itself. It is not possible to use the power supply terminal for other purposes than the foreseen.

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	32	43

6. OPTIONS

6.1. External 4x4 keyboard

A 16-key keyboard could be necessary. Both language and functions of this keyboard can be adjusted on customer's demand.

With an external keyboard operator can choose Euro or litre pre-set.

Photo 5: Pre-set keyboard adjustement on customer's demand

6.2. 16-digit-on-2-line Display (to be implemented)

If necessary a second small display can be installed near the keyboard: this display works even for complex procedures such as automatic payment, inserting a password, kilometers covered etc.

Photo 6: Second Display

In this case display shows:

Date......Temperature TimeAlarm condition

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	33	43

6.3. Anomaly signalling device

If a detected anomaly has to be shown in remote, a simple device can be used: it is connected to the same flat cable used for display and allows to activate a free voltage contact by whom a lamp or any other signalling device can be supplied.

Le caratteristiche elettriche sono le seguenti:

- Max mains 270Vca or 350Vdc
- Output voltage depending on the device used:
 - \rightarrow 3A \rightarrow Relay (Standard)
 - IA → Solid State devices (Atex non sparking)

Mechanical specifications:

Photo 7: Anomaly remote signalling device

- Fixing method:
- DIN rail • Overhall sizes: 90x35x58mm
- Weight: 60g

6.4. I/O expansion device

When the application requires to control non-standard equipment, you can use an expansion device I/O.

This particularly effective is in case of personalization for self-service systems in which, according to current rules, controlling a greater number of field devices is necessary.

This device can read 6 Inputs and drive 6 Outputs. Inputs are available on the terminal. The outputs, open collector type, may be connected to its implementation through flat cable.

The electrical characteristics are as follows:

Photo 8: I/O expansion device

0	INPUT	Maximum voltage	+5Vdc	open clamp
		Maximum current	1mA	clamp closed at 0V
0	OUTPUT	Maximum voltage	+24Vdc	ad uscita non attiva
		Maximum current	10mA	active output

To use the outputs in a dangerous environment, to the I/O expansion device can be connected through a flat cable a field interface similar to the one described above (Anomaly) with the following characteristics:

- Maximum voltage
- Output current
- 270Vca o 350Vdc

Depending on the device used:

 \rightarrow 3A \rightarrow Relay (Standard)

IA → Solid State Devices

(Atex non sparking)

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	34	43

7. ELECTRICAL CONNECTIONS

7.1. Low voltage connections

Usually all the performed controls with micro switches and buttons are normally open and must close on 0V when used. Particularly:

- Start contact ______ open in stand-by, closed during delivering
- High pressure contact N.O. o N.C. modifiable through set-up
- Predetermination buttons normally open, closed when activated
- Foreseen mass flow meter: _____ Impulsive type:

50mA active low 100 x Kg/Smc

Serial type:

Impulses:

Output:

Power supply tension: Power sup. curr.(MAX): Serial line

WARNING:

The below reported electrical connection schemes do not absolve the installer from

respecting the standards of the country where the installation is going to be performed, and

Current per channel:

5V, 12V, 24V 200mA, 100mA, 50mA RS485 Standard ModBus

Terminal Board TB1

See Warning

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	35	43

Terminal Board TB2

Terminal Board TB3

Type / N°Rev.FwDatePageTotal pagesEW055.600DD4L6th June 20183643

Terminal Board TB4

Terminal Board TB5

See Warning

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	37	43

Connector J1

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	38	43

7.2. High voltage connections

The computing head provides voltage free contacts, able to pilot resistive and/or inductive loads with the following characteristics:

Voltage max 270Vca

• Depending on the output device used:

- Relè (Standard)
- Solid State Device (Atex)

- \rightarrow Current max 3A¹
- → Current max 1A

Terminal Board TB6

¹ 1A Limited for TB6 output EV1 $- 1^{st}$ Lev in order to circuit integrity control

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	39	43

Terminal Board TB7

Terminal Board TB8

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	40	43

8. IDENTIFICATION OF COMPUTING HEAD TW1

In the respect of the standards in force, an identification plate of the product is applied as shown in the figure:

Esil Via F GEN	Uelma s Ili Canepa OVA (Italia)	5. F.I. 134D-E 16010	 Serra Riccò
Type Examination	n Certificate:	N° LNE - 15430 rév	v. 1 Dtd: 26-08-09
Calculator:	TW1 - M		
Style:	Standard		
S/n:	Dtd:		
Power supply:	230Vac/5	50mA	
Unit:	Kg/Smc		
Temperature:	-40°C+70°C	Umidity: 90%	
Mechanical cond	lition:	CLASS M2	
Electromagnetic	condition:	CLASS E2	

Figure 28: TW1-M; "Standard" Identification plate

On the plate the following data are shown:

- Device manufacturer.
- Address.
- CET (Type Examination Certificate).
- Device type.
- Application Area.
- Device identifying S/n and date.

EsiWelma s.r.l. Via F.lli Canepa 134D-E 16010 GENOVA (Italia)	Serra Riccò
Type Examination Certificate: N° LNE - 15430 rev	7. 1 Dtd: 26-08-09
Calculator: TW1nA - M	
Style: Ex II 3G Ex nA IIC T4 X	
S/n: Dtd:	
Power supply: 230Vac / 50mA	
Unit: Kg/Smc	
Temperature: -40°C+70°C Umidity: 90%	
Mechanical condition: CLASS M2	
Electromagnetic condition: CLASS E2	

Figure 29: TW1nA-M; "Atex" ⁽¹⁾ Identification plate

- Power supply tension (voltage) and Current consumption.
- Measure Unit.
- Environmental Condition.
- Mechanical Condition.
- Electromagnetic Condition.

⁽¹⁾ Symbol "X" indicated in the *Style* field of the Identification plate denote that computing head and accessories have to be installed in a box with degree of protection \geq IP54.

Photo 9: Identification plate of the electronic computing head TW1

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	41	43

9. MECHANICAL CLAMPING

The CPU of the computing head is settled into a metallic box which can be clamped in a vertical as well as a horizontal position.

Some tangs assure a correct clamping:

Figure 30: Clamping of the CPU box

There are some clamping points also for displays. The tangs settled in the centre are not clamping points, but eyelets for legalizing leads.

Figure 31: Clamping of the display box

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	42	43

10. LEGALIZING PROCEDURE OF THE COMPUTING HEAD TW1

10.1. Legalizing procedure of CPU

Photo 10: Computing head TW1 CPU

10.2. Legalizing procedure of display

Photo 11: Computing Head TW1-M and TW1nA-M Display front view

It's possible to use the right or the left holes.

Lead that prevents from removing the display connection cable.

Note

The spiral that keeps from removing the containers (CPU and Display) from the dispenser must be fastened to a part that cannot be moved from the dispenser.

Photo 12: Computing Head TW1-M and TW1nA-M Display rear view

Photo 13: Computing Head TW1-M and TW1nA-M Display rear view . Neon tube back-lighting version

Type / N°	Rev.	Fw	Date	Page	Total pages
EW055.600D	D	4L	6 th June 2018	43	43